Culture Collections

Bacteria and Mycoplasmas detail

Conditions of Supply of Microbial Pathogens: Safety

Bacteria Collection: Mycobacterium szulgai

NCTC Number: NCTC 10831
Current Name: Mycobacterium szulgai
Original Strain Reference: 25932
Other Collection No: ATCC 35799; DSM 44166; JCM 6383; PCM 1876; TMC 1328; 25932
Previous Catalogue Name: Mycobacterium szulgae
Type Strain: Yes
Family: Mycobacteriaceae
Hazard Group (ACDP): 3
Release Restrictions: Terms & Conditions of Supply of Microbial Pathogens: Safety
Conditions for growth on solid media: lowenstein-jensen agar,37, aerobic
Conditions for growth on liquid media: nutrient broth,37, aerobic
Isolated From: human, cervical adenitis
16S rRNA Gene Sequence: >gb|X99220|ATCC 35799|M.szulgai internal transcribed spacer between 16S and 23S rRNA,genomic sequence.| aaggagcaccacgaa...
23S rRNA Gene Sequence: >gb|U24551|ATCC 35799|Mycobacterium szulgai 23S rRNA, partial sequence.| tgtgcctacaatccg... >gb|X99220|ATCC 35799|M.szulgai internal transcribed spacer between 16S and 23S rRNA,genomic sequence.| aaggagcaccacgaa...
Bibliography: MARKS J ET AL 1972 TUBERCLE 53 210
Extended Bibliography: showhide Show bibliography
Ref #: 59979
Author(s): Roth,A.;Fischer,M.;Hamid,M.E.;Michalke,S.;Ludwig,W.;Mauch,H.
Journal: J Clin Microbiol
Title: Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences
Volume: 36
Page(s): 139-47
Year: 1998
Keyword(s): GENBANK/X92668 GENBANK/X97632 GENBANK/X97633 GENBANK/X99217 GENBANK/X99219 GENBANK/X99220 GENBANK/Y14182 GENBANK/Y14183 GENBANK/Y14184 GENBANK/Y14185 GENBANK/Y14187 GENBANK/Y14188 GENBANK/Y14189 GENBANK/Y14190 GENBANK/Y14191 GENBANK/Y14192 Base Sequence DNA, Ribosomal/*chemistry Molecular Sequence Data Mycobacterium/*classification/genetics Phylogeny Polymerase Chain Reaction RNA, Ribosomal, 16S/*genetics RNA, Ribosomal, 23S/*genetics Transcription, Genetic
Remarks: Interspecific polymorphisms of the 16S rRNA gene (rDNA) are widely used for species identification of mycobacteria. 16S rDNA sequences, however, do not vary greatly within a species, and they are either indistinguishable in some species, for example, in Mycobacterium kansasii and M. gastri, or highly similar, for example, in M. malmoense and M. szulgai. We determined 16S-23S rDNA internal transcribed spacer (ITS) sequences of 60 strains in the genus Mycobacterium representing 13 species (M. avium, M. conspicuum, M. gastri, M. genavense, M. kansasii, M. malmoense, M. marinum, M. shimoidei, M. simiae, M. szulgai, M. triplex, M. ulcerans, and M. xenopi). An alignment of these sequences together with additional sequences available in the EMBL database (for M. intracellulare, M. phlei, M. smegmatis, and M. tuberculosis) was established according to primary- and secondary-structure similarities. Comparative sequence analysis applying different treeing methods grouped the strains into species-specific clusters with low sequence divergence between strains belonging to the same species (0 to 2%). The ITS-based tree topology only partially correlated to that based on 16S rDNA, but the main branching orders were preserved, notably, the division of fast-growing from slowly growing mycobacteria, separate branching for M. simiae, M. genavense, and M. triplex, and distinct branches for M. xenopi and M. shimoidei. Comparisons of M. gastri with M. kansasii and M. malmoense with M. szulgai revealed ITS sequence similarities of 93 and 88%, respectively. M. marinum and M. ulcerans possessed identical ITS sequences. Our results show that ITS sequencing represents a supplement to 16S rRNA gene sequences for the differentiation of closely related species. Slowly growing mycobacteria show a high sequence variation in the ITS; this variation has the potential to be used for the development of probes as a rapid approach to mycobacterial identification.
URL: 9431937
Ref #: 60196
Author(s): Kim,B.J.;Lee,S.H.;Lyu,M.A.;Kim,S.J.;Bai,G.H.;Chae,G.T.;Kim,E.C.;Cha,C.Y.;Kook,Y.H.
Journal: J Clin Microbiol
Title: Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB)
Volume: 37
Page(s): 1714-20
Year: 1999
Keyword(s): GENBANK/AF057449 GENBANK/AF057450 GENBANK/AF057451 GENBANK/AF057452 GENBANK/AF057453 GENBANK/AF057454 GENBANK/AF057455 GENBANK/AF057456 GENBANK/AF057457 GENBANK/AF057458 GENBANK/AF057459 GENBANK/AF057460 GENBANK/AF057461 GENBANK/AF057462 GENBANK/AF057463 GENBANK/AF057464 GENBANK/AF057465 GENBANK/AF057466 GENBANK/AF057467 GENBANK/AF057468 GENBANK/AF057469 GENBANK/AF057470 GENBANK/AF057471 GENBANK/AF057472 GENBANK/AF057473 GENBANK/AF057474 GENBANK/AF057475 GENBANK/AF057476 GENBANK/AF057477 GENBANK/AF057478 etc. Amino Acid Sequence DNA-Directed RNA Polymerases/chemistry/*genetics Humans Molecular Sequence Data Mycobacterium/*classification/enzymology/genetics Mycobacterium Infections/microbiology Phylogeny Restriction Mapping Sequence Alignment Sequence Homology, Amino Acid
Remarks: For the differentiation and identification of mycobacterial species, the rpoB gene, encoding the beta subunit of RNA polymerase, was investigated. rpoB DNAs (342 bp) were amplified from 44 reference strains of mycobacteria and clinical isolates (107 strains) by PCR. The nucleotide sequences were directly determined (306 bp) and aligned by using the multiple alignment algorithm in the MegAlign package (DNASTAR) and the MEGA program. A phylogenetic tree was constructed by the neighbor-joining method. Comparative sequence analysis of rpoB DNAs provided the basis for species differentiation within the genus Mycobacterium. Slowly and rapidly growing groups of mycobacteria were clearly separated, and each mycobacterial species was differentiated as a distinct entity in the phylogenetic tree. Pathogenic Mycobacterium kansasii was easily differentiated from nonpathogenic M. gastri; this differentiation cannot be achieved by using 16S rRNA gene (rDNA) sequences. By being grouped into species-specific clusters with low-level sequence divergence among strains of the same species, all of the clinical isolates could be easily identified. These results suggest that comparative sequence analysis of amplified rpoB DNAs can be used efficiently to identify clinical isolates of mycobacteria in parallel with traditional culture methods and as a supplement to 16S rDNA gene analysis. Furthermore, in the case of M. tuberculosis, rifampin resistance can be simultaneously determined.
URL: 10325313
Ref #: 75210
Author(s): Stone,B.B.;Nietupski,R.M.;Breton,G.L.;Weisburg,W.G.
Journal: Int J Syst Bacteriol
Title: Comparison of Mycobacterium 23S rRNA sequences by high-temperature reverse transcription and PCR
Volume: 45
Page(s): 811-9
Year: 1995
Keyword(s): GENBANK/U24502 GENBANK/U24503 GENBANK/U24504 GENBANK/U24505 GENBANK/U24506 GENBANK/U24507 GENBANK/U24508 GENBANK/U24509 GENBANK/U24510 GENBANK/U24511 GENBANK/U24512 GENBANK/U24513 GENBANK/U24514 GENBANK/U24515 GENBANK/U24516 GENBANK/U24517 GENBANK/U24518 GENBANK/U24519 GENBANK/U24520 GENBANK/U24521 GENBANK/U24522 GENBANK/U24523 GENBANK/U24524 GENBANK/U24525 GENBANK/U24526 GENBANK/U24527 GENBANK/U24528 GENBANK/U24529 GENBANK/U24530 GENBANK/U24531 Base Sequence Molecular Sequence Data Mycobacterium/*genetics Phylogeny *Polymerase Chain Reaction RNA, Bacterial/*chemistry RNA, Ribosomal, 16S/chemistry RNA, Ribosomal, 23S/*chemistry Temperature Transcription, Genetic
Remarks: We describe a modified rRNA sequence analysis method which we used to determine the phylogenetic relationships among 58 species belonging to the genus Mycobacterium. We combined the sensitivity of the reverse transcriptase PCR for amplifying nanogram amounts of template rRNA material with the elevated extension temperatures used for the thermostable DNA polymerase from Thermus thermophilus. A 70 degrees C reverse transcription extension step permitted improved read-through of highly structured rRNA templates from members of the genus Mycobacterium, which have G+C contents of 66 to 71 mol%. The nucleic acid sequences of the amplified material were then determined by performing thermal cycle sequencing with alpha-33P-labeled primers, again with extension at 70 degrees C. Nonspecifically terminated bands were chased by using terminal deoxynucleotidyl transferase. Our method had a template requirement of nanogram amounts or less of purified RNA or 2,000 CFU of intact cells and had sufficient sensitivity so that lyophils obtained from the American Type Culture Collection could be used as source material. Sequences from a 250-nucleotide stretch of the 23S rRNA were aligned, and phylogenetic trees were evaluated by using the De Soete distance treeing algorithm and Rhodococcus bronchialis as the outgroup. Our 23S rRNA trees were compared with previously published 16S rRNA trees, including the comprehensive trees developed by the University of Illinois Ribosomal Database Project, and included 15 species not evaluated previously. Most of the groups were in general agreement and were consistent with relationships determined on the basis of biochemical characteristics, but some new relationships were also observed.
URL: 7547304
Ref #: 1300
Author(s): Skerman,V.B.D.;McGowan,V.;Sneath,P.H.A.(ed)
Journal: Int. J. Syst. Bacteriol.
Title: Approved Lists of Bacterial Names.
Volume: 30
Page(s): 225-420
Year: 1980
Ref #: 6111
Author(s): Marks,J.;Jenkins,P.A.;Tsukamura,M.
Journal: Tubercle
Title: Mycobacterium szulgai - a new pathogen.
Volume: 53
Page(s): 210-214
Year: 1972
Data: (ATCC 35799) Type strain / J. Marks, PHLS Cardiff in 1972 / A. T. Willis, PHLS Luton / Cervical adenitis / Marks, J. et al. (1972) Tubercle 53, 210
Accession Date: 01/01/1972
Authority: Marks et al. 1972 (AL)
Depositor: MARKS J
Taxonomy: TaxLink: S1982 (Mycobacterium szulgai Marks et al. 1972) - Date of change: 5/02/2003
Biosafety Responsibility: It is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country

Additional Information

Note: Links open in a new window


The Culture Collections hold cell cultures, bacteria, fungi and virus strains from worldwide sources. Our scientists ensure that the identification of the cultures is correct and they remain unchanged from when they are first deposited with the Collection. Nevertheless, some of the data we provide about the cultures is supplied by the person depositing the strains and, although we have multiple checking procedures in place, we cannot always verify all their data. Please note that the Culture Collections cannot be held responsible for any inaccuracies in the data provided by the depositors.

Cultures supplied by Culture Collections are to be used as controls for microbiology testing and for research purposes only. Please view the Terms & Conditions of Supply for more information.

Contact us if you want to discuss commercial use of the cultures.

Available Formats

Ampoule (Bacteria)
Bacterial DNA - 2µg

Back to top
Copyright © Public Health England.

Please confirm your country of origin from the list below.